Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 92-99, 2022.
Article in Chinese | WPRIM | ID: wpr-942333

ABSTRACT

Continuous cropping obstacle is the bottleneck of medicinal plant cultivation, which seriously affects the quality and yield of medicinal materials. The research on the mechanism of continuous cropping obstacle has evolved from soil physical and chemical properties and allelopathy in the 1970s to the changes of rhizosphere microenvironment and plant response mechanism at present. According to the available studies in this field and our previous research work, we systematically analyzed the mechanism of rhizosphere exudate-mediated microbial community reconstruction in the soil of the medicinal plants in continuous cropping. Specifically, rhizosphere exudates, providing the carbon source and energy for microbial growth, act as inducers or repellents to induce microbial growth or transfer, thereby changing the physicochemical properties (such as acidity) of rhizosphere soil and further altering the structure of rhizosphere microbial community. Further, we comprehensively discussed the ways of synergism between rhizosphere exudates and soil microorganisms in causing harm to the medicinal plants in continuous cropping. That is, rhizosphere exudates mediate the infection of the rhizosphere by pathogenic microorganisms, increase the susceptibility of the nearby plants, inhibit the defense of the host plants, and protect the pathogens to occupy the dominant niche. The synergistic interaction results in the release of more pathogenic factors such as mycotoxins by rhizosphere pathogens, enhanced toxicity of rhizosphere allelochemicals, and deterioration of soil physical and chemical properties. This paper summarizes the role of interaction between rhizosphere exudates and soil microorganisms in the formation of continuous cropping obstacles, aiming to provide a new research idea for revealing the formation mechanism as well as the theoretical support for overcoming continuous cropping obstacles of medicinal plants.

2.
China Journal of Chinese Materia Medica ; (24): 2023-2030, 2020.
Article in Chinese | WPRIM | ID: wpr-827985

ABSTRACT

Rhizosphere is the main place for the communication between medicinal plants and rhizosphere microorganisms. Medicinal plants are closely related to the diversity and richness of rhizosphere microorganisms, and rhizosphere microorganisms in the rhizosphere of medicinal plants have important effects on the growth and development, yield, quality and resilience of medicinal plants. The reasonable and effective utilization of the principle of interaction between medicinal plants and rhizosphere microorganisms has practical guiding significance for promoting the growth of medicinal plants, enhancing the ability of resistance to diseases and resisting the invasion of pathogens. This paper reviewed the research status of medicinal plants and rhizosphere microorganisms in recent years, including the influence of medicinal plants on rhizosphere microorganisms, the influence of rhizosphere microorganisms on medicinal plants and the mechanism of interaction between medicinal plants and rhizosphere microorganisms. The problems existing in the study of medicinal plants and rhizosphere microorganisms and the direction for further study were also pointed out.


Subject(s)
Plant Roots , Plants, Medicinal , Rhizosphere , Soil Microbiology
3.
Acta Pharmaceutica Sinica ; (12): 1325-2016.
Article in Chinese | WPRIM | ID: wpr-779315

ABSTRACT

Paeonia suffruticosa also named Moutan that cultivated in five geographic regions during different growth stages were chosen in this study. Biolog and 454 pyrosequencing technology were used to detect the whole microbial activity and fungal diversity for exploring the relationship between the geo-authentic features of the medicinal plant and the rhizosphere microorganism. The results suggest that the value of average well color development (AWCD) from the rhizosphere soil of P. suffruticosa in the five regions at the fo ur growth stage have an increasing tendency. 9 703 operational taxonomic unit (OTU) were obtained from 272 463 high quality sequences according to the similarity of 97% by the pyrosequencing. Fungi in five phyla, twenty-two classes, seventy orders, one hundred and thirty-nine families and two hundred and sixty-six genera were detected in the five regions excluding twelve percent to fifty-eight percent unidentified fungi. They were divided into four branches, i.e. Blastocladiales, Chytridiomycota, Dikarya and Glomeromycetes. Twenty-four genera such as Leptosphaeria were found in the five regions while six genera such as Curvularia were only detected in the geo-authentic regions. The dominant genera were Guehomyces, Exophiala and Fusarium in geo-authentic regions, whereas genus Leptosphaeria, Cryptococcus, Exophiala, Fusarium and Ceratobasidium in non-authentic regions. The results from principal co-ordinates analysis (PCoA) showed that the fungi formations were similar in Tongling and Nanling region at four different growth stages, and the same in Heze at the leaf bud and fruiting stage. According to heatmap analysis, Tongling and Nanling region showed a close similarity in fungal community structures on phylogenetic analysis, while Bozhou, Heze and Luoyang showed the same. In brief, the whole microbial activity was higher in geo-authentic regions than the non-authentic. Fungi in rhizosphere soil of the medicinal peony presented diversity and region specificity. We found not only the abundant new species in the five regions, but also the phylogenetic similarity in the geo-authentic regions.

SELECTION OF CITATIONS
SEARCH DETAIL